

Declaration Owner

Sloan Valve Company 10500 Seymour Avenue Franklin Park, IL 60131 customer.service@sloan.com | 800.982.5839 https://www.sloan.com

Product

Sloan Sensor Flushometers

Functional Unit

1 packaged, installed unit with a Reference Service Life of 10 years in a building with an Estimated Service Life of 75 years

EPD Number and Period of Validity

SCS-EPD-08149

EPD Valid August 10, 2022 through August 09, 2027

Product Category Rule

UL. PCR Guidance for Building-Related Products and Services
Part A: Life Cycle Assessment Calculation Rules and Report
Requirements. Version 3.2. December 2018.
UL PCR Guidance for Building-Related Products and Services
Part B: Kitchen and Bath Fixture Fittings and Accessory Products
EPD Requirements. Version 1.0. October 2020.

Program Operator

SCS Global Services 2000 Powell Street, Ste. 600, Emeryville, CA 94608 +1.510.452.8000 | www.SCSglobalServices.com

Declaration owner:	Sloan Valve Company
Address:	10500 Seymour Avenue, Franklin Park, IL 60131
Declaration Number:	SCS-EPD-08149
Declaration Validity Period:	EPD Valid August 10, 2022 through August 09, 2027
Program Operator:	SCS Global Services
Declaration URL Link:	https://www.scsglobalservices.com/certified-green-products-guide
LCA Practitioner:	Beth Cassese, SCS Global Services
LCA Software and LCI database:	OpenLCA 1.10.3 software and the Ecoinvent v3.8 database
Product's Intended Application:	For use with toilet or urinal fixtures as the dispensing unit for the water supplied.
Product RSL:	10 Years (ESL 75 Years)
Markets of Applicability:	North America
EPD Type:	Product-Specific
EPD Scope:	Cradle-to-Grave
LCIA Method and Version:	CML-IA Baseline and TRACI 2.1
Independent critical review of the LCA and	□ internal ⊠external
data, according to ISO 14044 and ISO 14071	
LCA Reviewer:	Thomas Gloria, Ph.D., Industrial Ecology Consultants
Product Category Rule:	UL PCR Guidance for Building-Related Products and Services Part B: Kitchen and Bath Fixture Fittings and Accessory Products EPD Requirements. Version 1.0. October 2020.
PCR Review conducted by:	Jim Mellentine, Angela Fisher, Christopher Marozzi
Independent verification of the declaration and data, according to ISO 14025 and the PCR	□ internal ⊠ external
EPD Verifier:	Thomas Gloría, Ph.D., Industrial Ecology Consultants
Declaration Contents:	1. ABOUT Sloan

Disclaimers: This EPD conforms to ISO 14025, 14040, 14044, and ISO 21930.

Scope of Results Reported: The PCR requirements limit the scope of the LCA metrics such that the results exclude environmental and social performance benchmarks and thresholds, and exclude impacts from the depletion of natural resources, land use ecological impacts, ocean impacts related to greenhouse gas emissions, risks from hazardous wastes and impacts linked to hazardous chemical emissions.

Accuracy of Results: Due to PCR constraints, this EPD provides estimations of potential impacts that are inherently limited in terms of accuracy.

Comparability: The PCR this EPD was based on was not written to support comparative assertions. EPDs based on different PCRs, or different calculation models, may not be comparable. When attempting to compare EPDs or life cycle impacts of products from different companies, the user should be aware of the uncertainty in the final results, due to and not limited to, the practitioner's assumptions, the source of the data used in the study, and the specifics of the product modeled.

In accordance with ISO 21930:2017, EPDs are comparable only if they comply with the core PCR, use the same sub-category PCR where applicable, include all relevant information modules and are based on equivalent scenarios with respect to the context of construction works.

1. ABOUT Sloan

Sloan is the world's leading manufacturer of commercial plumbing systems and has been in operation since 1906. Headquartered in Franklin Park, Illinois, USA, the company is at the forefront of the green building movement and provides smart, sustainable restroom solutions by manufacturing water-efficient products such as flushometers, electronic faucets, sink systems, soap dispensing systems, and vitreous china fixtures for commercial, industrial, and institutional markets worldwide.

The Sloan sensor flushometers are manufactured at Sloan facility in Franklin Park, IL, with a majority of the brass components being manufactured by the Sloan foundry in Augusta, Arkansas and the sensor components being manufactured by the Sloan facility in Andover, Massachusetts.

2. PRODUCT

2.1 Product Description

Sloan flushometer products belong to the Commercial Plumbing Fixtures specification code, CSI code 22 42 43 and the UNSPSC code 30180000.

A flushometer is a flush valve mechanism designed to flush toilets and urinals. Many present-day commercial applications use flushometers in place of standard flush valves as they are less water intensive. The flushometer is a plumbing device that does not require a storage tank filled with water for flushing. Rather, it conserves more water over time and for every flush through delivery of a metered amount of water at much higher pressure compared to that of a standard flush valve. The product systems under study include the following products.

Product Features:

Ecos

- Automatically activates by means of an infrared sensor with multifocused lobular sensing fields
- Automatically initiates a 1.1 gpf or 1.6 gpf flush based on how long user remains in sensor range
- Buttons on top of the flush valve enable manual flushing with a standard or reduced flush at restroom visitor's discretion
- Fixed metering bypass and no external volume-adjustment to ensure water conservation

G2

- Automatically operates by means of an infrared sensor with multiple-focused lobular fields for high and low target detection
- User friendly, three-second flush delay and Courtesy Flush override button
- Adjustable tailpiece
- Available in low consumption (1.6 gpf/6.0 Lpf), water saver (3.5 gpf/13.2 Lpf), and high efficiency (1.28 gpf/4.8 Lpf) models

Solis

- Automatically operates by means of an infrared sensor with multiple-focused lobular sensing fields for high and low target detection
- User friendly, three-second flush delay and Courtesy Flush override button
- Available tailpiece
- Available in low consumption (1.6 gpf/6.0 Lpf), water saver (3.5 gpf/13.2 Lpf), and high efficiency (1.28 gpf/4.8 Lpf) models

Table 1. Sloan Sensor Flushometer Models Represented in this EPD.

Toilets		Urinal			
Model	Flush Volume	Model	Flush Volume		
ECOS 8111-1.6/1.1*	1.28 gpf/ 4.8 Lpf	ECOS 8186-0.125	0.125 gpf/ 0.5 Lpf		
ECOS 8111-1.1	1.11 gpf/ 4.2 Lpf	ECOS 8186-0.125 L	0.125 gpf/ 0.5 Lpf		
ECOS 8111-1.28	1.28 gpf/ 4.8 Lpf	ECOS 8186-0.25	0.25 gpf/ 1.0 Lpf		
ECOS 8111-1.28/1.1**	1.22 gpf/4.62 Lpf	ECOS 8186-0.5	0.5 gpf/ 1.9 Lpf		
G2 OPTIMA PLUS 8111-1.28	1.28 gpf/ 4.8 Lpf	ECOS 8186-0.5 L	0.5 gpf/ 1.9 Lpf		
G2 OPTIMA PLUS 8113-1.28	1.28 gpf/ 4.8 Lpf	G2 OPTIMA PLUS 8186-0.5	0.5 gpf/ 1.9 Lpf		
G2 OPTIMA PLUS 8115-1.28	1.28 gpf/ 4.8 Lpf	G2 OPTIMA PLUS 8186-0.5 E	0.5 gpf/ 1.9 Lpf		
G2 OPTIMA PLUS 8116-1.28	1.28 gpf/ 4.8 Lpf	SOLIS 8186-0.125	0.125 gpf/ 0.5 Lpf		
SOLIS 8111-1.1	1.11 gpf/ 4.2 Lpf	SOLIS 8186-0.25	0.25 gpf/ 1.0 Lpf		
SOLIS 8111-1.28 Single Flush	1.28 gpf/ 4.8 Lpf	SOLIS 8186-0.5	0.5 gpf/ 1.9 Lpf		
SOLIS 8111-1.6/1.1 Dual Flush*	1.28 gpf/ 4.8 Lpf				
SOLIS 8113-1.6/1.1 Dual Flush*	1.28 gpf/ 4.8 Lpf				
SOLIS 8115-1.6/1.1 Dual Flush*	1.28 gpf/ 4.8 Lpf				

^{*}Dual flush flushometer, with 1.6/gpf/6.1 Lpf (regular flush) and 1.1 gpf/4.2 Lpf (reduced flush) options.

2.2 Application

Sloan flushometers are designed for use with toilet or urinal fixtures as the dispensing unit for the water supplied. The flushometers are primarily installed in commercial, industrial, and institutional markets worldwide.

2.3 Representative Product

The SOLIS product line was chosen as the representative product for this study as it was shown to represent the worst case scenario of the three product lines.

2

^{**}Dual flush flushometer, with 1.28/gpf/4.8 Lpf (regular flush) and 1.1 gpf/4.2 Lpf (reduced flush) options.

2.4 Material Composition

 Table 2. Sloan Sensor Flushometer Material Components.

Material	Mass (kg)	Percentage of Total Mass	Pre-Consumer Recycled Content	Post-Consumer Recycled Content
Valve				
Brass	1.88	89.7%	67-99%	0%
Rubber	0.073	3.50%	0%	0%
Celcon	0.041	1.94%	0%	0%
EPDM	0.031	1.47%	0%	0%
Zinc	0.027	1.30%	80%	0%
HDPE	0.013	0.63%	0%	0%
Delrin	0.012	0.56%	0%	0%
Stainless Steel	0.007	0.33%	60%	0%
Other	0.013	0.61%	0%	0%
Valve Total	2.10	100%	-	-
Sensor				
Brass	0.439	31.2%	67-99%	0%
Silicone Rubber Adhesive	0.404	28.7%	0%	0%
Zinc	0.295	20.9%	80%	0%
Rubber	0.098	6.97%	0%	0%
Glass	0.037	2.61%	0%	0%
ABS	0.034	2.45%	0%	0%
Stainless Steel	0.024	1.68%	60%	0%
Battery	0.023	1.61%		
Polycarbonate	0.018	1.29%		
Copper	0.015	1.06%		
Solar Panel	0.008	0.58%	0%	0%
EPDM	0.006	0.45%	0%	0%
Other	0.007	0.52%		
Sensor Total	1.41	100%	-	-
Total	3.51			

2.5 Technical Requirements

Table 3. Sloan Sensor Flushometer Technical Requirements.

Property	Test Method	Unit	Value
Flow rate		Gallons per flush Liters per minute	0.125 – 1.28 0.5 – 4.8
Operational water pressure	ASME A112.18.1-2018/ CSA B125.1-18	PSI	Max: 80 Min: 15

2.6 Flow Diagram

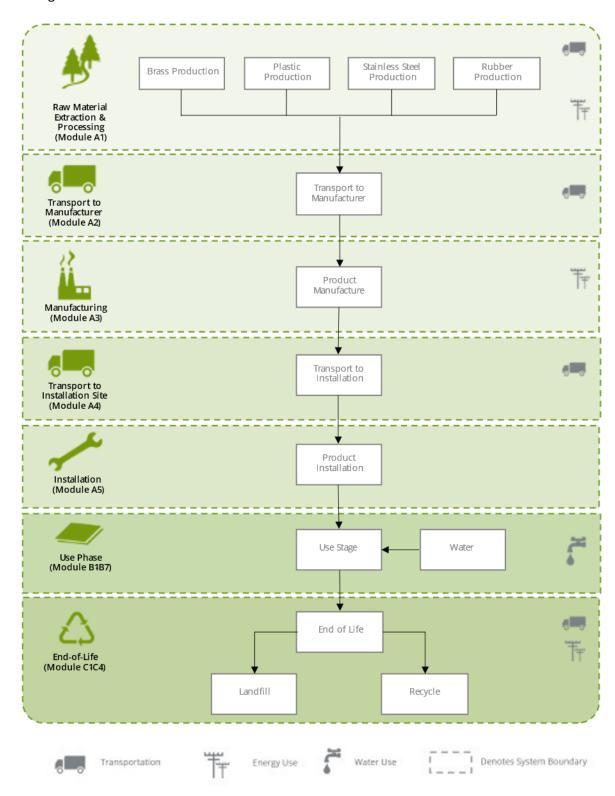


Figure 1. Flow diagram for the Sloan Sensor Flushometers.

© 2022 SCSglobalServices.com 5

3. LCA: METHODOLOGICAL FRAMEWORK

3.1 Functional Unit

The functional unit used in the study is one (1) packaged, installed unit with a reference service life (RSL) of 10 years. The building estimated service life (ESL) is assumed to be 75-years in order to be consistent with ASHRAE 189.1 (2014, Section 9.5.1).

Table 4. Sloan Sensor Flushometer Functional Unit Properties.

Property	Unit	Value
Functional Unit	One (1) packaged	installed product
RSL	Years	10
ESL	Years	75
Mass	kg	2.51

3.2 System Boundary

The scope of the EPD is cradle-to-grave, including raw material extraction and processing; raw material transportation; product manufacture, including packaging; product distribution; installation; use; and end-of-life.

Table 5. Sloan Sensor Flushometer System Boundaries.

Pro	oduct		Const	ruction				Use					End-	of-life		Benefits and loads beyond the system boundary
A1	A2	А3	A4	A5	В1	B2	В3	В4	B5	В6	В7	C1	C2	С3	C4	D
Raw material extraction and processing	Transport to manufacturer	Manufacturing	Transport	Construction - installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction demolition	Transport	Waste processing	Disposal	Reuse, recovery and/or recycling potential
х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	MND

X = Included in system boundary MND = Module not declared

3.3 Allocation

Manufacturing resource use was allocated to the products based on mass. Impacts from transportation were allocated based on the mass of material and distance transported.

3.3 Cut-off criteria

According to the PCR, processes contributing greater than 1% of the total environmental impact indicator for each impact are included in the inventory. No data gaps were allowed which were expected to significantly affect the outcome of the indicator results.

3.4 Data Sources

Primary data were provided by Sloan for the Franklin Park, Andover, and Augusta facilities. In addition, primary data was collected for the brass supplier, H. Kramer, in Chicago, IL. The principal source of secondary LCI data is the Ecoinvent 3.8 database.

Table 6. LCI datasets and associated databases used to model the Sloan Sensor Flushometer products.

Component	Dataset	Data Source	Publication Date
Product			
ABS	market for acrylonitrile-butadiene-styrene copolymer acrylonitrile- butadiene-styrene copolymer Cutoff, U	Ecoinvent 3.8	2021
	market for injection moulding injection moulding Cutoff, U	Ecoinvent 3.8	2021
Battery	market for battery cell, Li-ion battery cell, Li-ion Cutoff, U	Ecoinvent 3.8	2021
Brass (H. Kramer)	market for borax, anhydrous, powder borax, anhydrous, powder Cutoff, U	Ecoinvent 3.8	2021
	market for lead smelter slag lead smelter slag Cutoff, U	Ecoinvent 3.8	2021
	market for soda ash, dense soda ash, dense Cutoff, U	Ecoinvent 3.8	2021
	market for scrap copper scrap copper Cutoff, U	Ecoinvent 3.8	2021
	market for zinc scrap, post-consumer zinc scrap, post-consumer Cutoff, U	Ecoinvent 3.8	2021
Bronze	market for casting, bronze casting, bronze Cutoff, U	Ecoinvent 3.8	2021
	market for scrap copper scrap copper Cutoff, U	Ecoinvent 3.8	2021
	market for zinc scrap, post-consumer zinc scrap, post-consumer Cutoff, U	Ecoinvent 3.8	2021
Celcon	market for polypropylene, granulate polypropylene, granulate Cutoff, U	Ecoinvent 3.8	2021
	market for injection moulding injection moulding Cutoff, U	Ecoinvent 3.8	2021
Copper	market for copper, cathode copper, cathode Cutoff, U	Ecoinvent 3.8	2021
	market for metal working, average for copper product manufacturing metal working, average for copper product manufacturing Cutoff, U	Ecoinvent 3.8	2021
Delrin	market for polypropylene, granulate polypropylene, granulate Cutoff, U	Ecoinvent 3.8	2021
	market for injection moulding injection moulding Cutoff, U	Ecoinvent 3.8	2021
EPDM	market for synthetic rubber synthetic rubber Cutoff, U	Ecoinvent 3.8	2021
	market for injection moulding injection moulding Cutoff, U	Ecoinvent 3.8	2021
Glass	market for flat glass, uncoated flat glass, uncoated Cutoff, U	Ecoinvent 3.8	2021
HDPE	market for polyethylene, high density, granulate polyethylene, high density, granulate Cutoff, U	Ecoinvent 3.8	2021
	market for injection moulding injection moulding Cutoff, U	Ecoinvent 3.8	2021
LDPE	market for polyethylene, low density, granulate polyethylene, low density, granulate Cutoff, U	Ecoinvent 3.8	2021
	market for injection moulding injection moulding Cutoff, U	Ecoinvent 3.8	2021
Neodymium oxide	market for neodymium oxide neodymium oxide Cutoff, U	Ecoinvent 3.8	2021
Noryl	market for polypropylene, granulate polypropylene, granulate Cutoff, U	Ecoinvent 3.8	2021
	market for injection moulding injection moulding Cutoff, U	Ecoinvent 3.8	2021
Nylon	market for nylon 6-6 nylon 6-6 Cutoff, U	Ecoinvent 3.8	2021
	market for injection moulding injection moulding Cutoff, U	Ecoinvent 3.8	2021
Other Brass	market for brass brass Cutoff, U	Ecoinvent 3.8	2021
	market for casting, brass casting, brass Cutoff, U	Ecoinvent 3.8	2021
	market for lead smelter slag lead smelter slag Cutoff, U	Ecoinvent 3.8	2021
	market for scrap copper scrap copper Cutoff, U	Ecoinvent 3.8	2021
	market for zinc scrap, post-consumer zinc scrap, post-consumer Cutoff, U	Ecoinvent 3.8	2021
Polyamide	market for glass fibre reinforced plastic, polyamide, injection moulded glass fibre reinforced plastic, polyamide, injection moulded Cutoff, U	Ecoinvent 3.8	2021
Polycarbonate	market for polycarbonate polycarbonate Cutoff, U	Ecoinvent 3.8	2021

Component	Dataset	Data Source	Publication Date
RTV Silicone	market for silicone product silicone product Cutoff, U	Ecoinvent 3.8	2021
Rubber	market for synthetic rubber synthetic rubber Cutoff, U	Ecoinvent 3.8	2021
	market for injection moulding injection moulding Cutoff, U	Ecoinvent 3.8	2021
Silicone adhesive	market for polyurethane adhesive polyurethane adhesive Cutoff, U	Ecoinvent 3.8	2021
Solar panel	market for photovoltaic laminate, a-Si photovoltaic laminate, a-Si Cutoff, U	Ecoinvent 3.8	2021
Stainless Steel	market for steel, chromium steel 18/8 steel, chromium steel 18/8 Cutoff, U	Ecoinvent 3.8	2021
	market for casting, steel, lost-wax casting, steel, lost-wax Cutoff, U	Ecoinvent 3.8	2021
Vinyl	market for polyvinylchloride, suspension polymerised polyvinylchloride, suspension polymerised Cutoff, U	Ecoinvent 3.8	2021
	market for injection moulding injection moulding Cutoff, U	Ecoinvent 3.8	2021
Vulcanized Fiber	market for cellulose fibre cellulose fibre Cutoff, U	Ecoinvent 3.8	2021
	market for blow moulding blow moulding Cutoff, U	Ecoinvent 3.8	2021
Zinc	market for zinc zinc Cutoff, U	Ecoinvent 3.8	2021
	market for metal working, average for metal product manufacturing metal working, average for metal product manufacturing Cutoff, U	Ecoinvent 3.8	2021
Package			
Cardboard	market for corrugated board box corrugated board box Cutoff, U	Ecoinvent 3.8	2021
Paper	market for kraft paper kraft paper Cutoff, U	Ecoinvent 3.8	2021
Pulp Tray	market for deinked pulp, wet lap deinked pulp, wet lap Cutoff, U	Ecoinvent 3.8	2021
Transport			
Truck	market for transport, freight, lorry 16-32 metric ton, EURO4 transport, freight, lorry 16-32 metric ton, EURO4 Cutoff, U	Ecoinvent 3.8	2021
Ship	market for transport, freight, sea, container ship transport, freight, sea, container ship Cutoff, U	Ecoinvent 3.8	2021
Manufacture			
Augusta, AR Electricity	SRMV eGRID	EPA	2019
Andover, MA Electricity	NEWE eGRID	EPA	2019
Franklin Park, IL Electricity	RFCW eGRID	EPA	2019
H. Kramer (Chicago, IL) Electricity	RFCW eGRID	EPA	2019
Hard Coal (H. Kramer)	market for hard coal hard coal Cutoff, U	Ecoinvent 3.8	2021
Natural Gas	market for heat, district or industrial, natural gas heat, district or industrial, natural gas Cutoff, U	Ecoinvent 3.8	2021
Propane	market for propane propane Cutoff, U	Ecoinvent 3.8	2021
Water	market for tap water tap water Cutoff, U	Ecoinvent 3.8	2021
Waste			
Hazardous Waste	market for hazardous waste, for incineration hazardous waste, for incineration Cutoff, U	Ecoinvent 3.8	2021
Landfill	market for inert waste, for final disposal inert waste, for final disposal Cutoff, U	Ecoinvent 3.8	2021
Wastewater	market for wastewater, average wastewater, average Cutoff, U	Ecoinvent 3.8	2021

3.5 Data Quality

 Table 7. Data Quality Assessment.

Data Quality Parameter	Data Quality Discussion
Time-Related Coverage: Age of data and the minimum length of time over which data is collected	The manufacturer provided primary data on product manufacturing for the Franklin Park and Andover facilities on annual production for 2020. Primary data for the intermediate processing of brass components, including brass ingot production, and sand-casting operations, were provided by the H. Kramer supplier and the Sloan foundry respectively, based on annual production for 2020. Representative datasets (secondary data) for upstream and background processes are generally less than 5 years old.
Geographical Coverage: Geographical area from which data for unit processes is collected to satisfy the goal of the study	The data used in the analysis provide the best possible representation available with current data. Electricity use for product manufacture is modeled using representative data modelled for the specific eGRID subregions represented in this study. Surrogate data used in the assessment are representative of global or European operations and are considered sufficiently similar to actual processes.
Technology Coverage: Specific technology or technology mix	For the most part, data are representative of the actual technologies used for processing, transportation, and manufacturing operations. Representative component datasets, specific to the type of material, are used to represent the actual processes, as appropriate.
Precision: Measure of the variability of the data values for each data expressed	Precision of results are not quantified due to a lack of data. Data collected for operations were typically averaged for one more years and over multiple operations, which is expected to reduce the variability of results.
Completeness: Percentage of flow that is measured or estimated	The LCA model included all known mass and energy flows for production of the products. In some instances, surrogate data used to represent upstream and downstream operations may be missing some data which is propagated in the model. No known processes or activities contributing to more than 1% of the total environmental impact for each indicator are excluded.
Representativeness: Qualitative assessment of the degree to which the data set reflects the true population of interest	Data used in the assessment represent typical or average processes as currently reported from multiple data sources and are therefore generally representative of the range of actual processes and technologies for production of these materials. Considerable deviation may exist among actual processes on a site-specific basis; however, such a determination would require detailed data collection throughout the supply chain back to resource extraction.
Consistency: Qualitative assessment of whether the study methodology is applied uniformly to the various components of the analysis	The consistency of the assessment is considered to be high. Data sources of similar quality and age are used; with a bias towards Ecoinvent v3.8 data where available. Different portions of the product life cycle are equally considered.
Reproducibility: Qualitative assessment of the extent to which information about the methodology and data values would allow an independent practitioner to reproduce the results reported in the study	Based on the description of the data and assumptions used, this assessment would be reproducible by other practitioners. All assumptions, models, and data sources are documented.
Sources of the Data: Description of all primary and secondary data sources	Data representing energy use at Sloan's manufacturing facilities represent a 12-month average and are considered of high quality due to the length of time over which these data are collected, as compared to a snapshot that may not accurately reflect fluctuations in production. For secondary LCI data, Ecoinvent v3.8 data are used.
Uncertainty of the Information: Uncertainty related to data, models, and assumptions	Uncertainty related to materials in the products and packaging is low. Actual supplier data for upstream operations was not available for all suppliers and the study relied upon the use of existing representative datasets. These datasets contained relatively recent data (<10 years) but lacked geographical representativeness. Uncertainty related to the impact assessment methods used in the study are high. The impact assessment methodology includes impact potentials, which lack characterization of providing and receiving environments or tipping points.

© 2022 SCSglobalServices.com

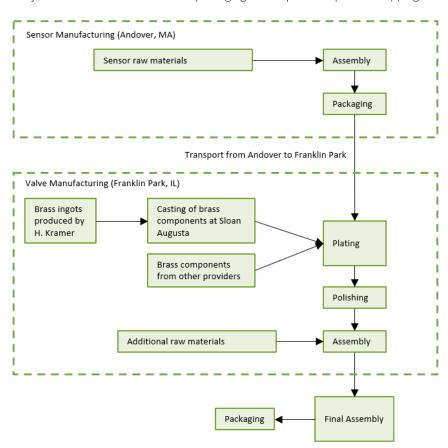
3.6 Period under review

The period of review is based on a 12-month period from January 2020 through December 2020.

3.7 Comparability

The PCR this EPD was based on was not written to support comparative assertions. EPDs based on different PCRs, or different calculation models, may not be comparable. When attempting to compare EPDs or life cycle impacts of products from different companies, the user should be aware of the uncertainty in the final results, due to and not limited to, the practitioner's assumptions, the source of the data used in the study, and the specifics of the product modeled.

3.8 Estimates and Assumptions


- Specific data were not available on acetal polymers in the product recipe such as Celcon M90 and Delrin 500. Secondary datasets for polypropylene were used from the Ecoinvent database to represent these polymers in the LCA model.
- The brass raw material inputs are assumed to be 67.3% recycled material, based on the U.S. EPA Advancing Sustainable Materials Management Fact Sheet.
- The plating on the gold and nickel plated bronze raw materials is assumed to be negligible.
- Specific data were not available on bronze materials in the sensor product recipe. Secondary datasets for scrap copper (88%) and zinc scrap (12%) were used as a proxy for bronze.
- The Franklin Park facility is located in the RFCW eGRID NERC subregion and the Augusta foundry is located in the SRMV eGRID NERC subregion. Ecoinvent datasets for the NERC subregion were modified to reflect the eGRID electricity supply mixes for RFCW and SRMV subregions to estimate resource use and emissions from electricity use at the facilities.
- Product transport from point of purchase to the building site is assumed to be 500 km as required by the Part B PCR.
- Product transport from the Sloan distribution center in Los Angeles, CA to points of purchase was assumed to be 2725 km, representing an average of several major cities across the United States.
- Installation of the products is assumed to be manual, requiring no additional materials or energy use.
- Transport of the packaging waste at installation is assumed to be 100 km as required by the Part B PCR.
- Transport of the product at end-of-life to waste processing and disposal is assumed to be 100 km as required by the Part B PCR.
- The maintenance of the products is assumed to include daily cleaning with a cleaning solution of 10 ml of 1% sodium lauryl sulfate solution as specified in the Part B PCR.
- The repair of the products is assumed to include the component part replacement of several of the internal component parts, 1-2 times over the RSL, according to manufacturer experts.
- The products are assumed to require no replacement during the 10-year RSL, but in accordance with the Part A PCR and Part B PCR, requires replacement 6.5 times over the 75-year ESL.
- The use phase modules B5 (Refurbishment) and B6 (Operational Energy Use) are assumed to have no impacts, as there is no resource or energy use associated with these modules.
- The use phase modules are modelled for the building/construction works ESL of 75 years.
- For the product end-of-life, disposal of product is assumed to be landfilled.

4. LCA: TECHNICAL INFORMATION AND SCENARIOS

4.1 Manufacture

The manufacturing facility is located at 10500 Seymour Avenue, Franklin Park, IL 60131, the sensor manufacturing facility is located at 19 Connector Road, Andover, MA 01810, and the foundry is located at 2719 Business HWY 33 South, Augusta, AR 72006.

The sensor component is manufactured and assembled at the Andover, MA facility, packaged and then shipped for final assembly at the Franklin Park facility. The brass component parts of the valve are cast at the Sloan foundry in Augusta and then shipped to the Franklin Park facility for polishing, plating, and assembly. The sensor and valve components are then combined in final assembly. This module also includes the packaging for the products prior to shipping.

4.2 Packaging

Table 8. Sloan Sensor Flushometer Packaging Material Components.

	Mass (kg)	Percentage of Total Mass	Pre-Consumer Recycled Content	Post-Consumer Recycled Content
Cardboard	0.626	67.5%	0%	30%
Paper	0.014	1.5%	0%	30%
Pulp Tray	0.288	31.0%	0%	0%
Total	0.927	100%	-	-

11

4.3 Transportation

 Table 9. Sloan Sensor Flushometer Transportation Summary.

Name	Unit	Value
Fuel type	-	Diesel
Liters of fuel	l/100 km	18.7
Vehicle Type	-	Freight Truck
Transport Distance	km	6455
Franklin Park, IL to Los Angeles, CA	km	3230
Los Angeles, CA to various US cities (average)	km	2725
Point of purchase to installation (per PCR)	km	500
Capacity utilization	%	50
Gross mass of products transported ¹	kg	4.43

¹ including packaging

4.4 Installation

The installation of the flushometer products is completed using manual labor and does not require additional ancillary materials. Waste is generated from the disposal of the packaging material and is modeled as required in the Part A PCR.

Table 10. Sloan Sensor Flushometer Installation Summary.

Name	Unit	Sensor Flushometer
Ancillary materials	kg	0
Net freshwater consumption specified by water source and fate	m ³	0
Other resources	kg	0
Electricity consumption	kwh	0
Other energy carriers	MJ	0
Product loss per functional unit	kg	0
Waste materials at the construction site before waste processing, generated by product installation	kg	0
Output materials resulting from on-site waste processing	kg	0
Mass of packaging waste specified by type	kg	0.927
Recycle	kg	0.695
Landfill	kg	0.185
Incineration	kg	0.046
Biogenic carbon contained in packaging	kg CO ₂	1.70
Direct emissions to ambient air, soil, and water	kg	0
VOC emissions	µg/m³	0

4.5 Use

Table 11. *Sloan Sensor Flushometer Maintenance Summary.*

Maintenance	Unit	Value
Description of process	-	Daily cleaning with 10 ml 1% sodium lauryl sulfate solution
Maintenance cycle	Cycles/RSL	3650
Maintenance cycle	Cycles/ESL	27,375
Net freshwater consumption		
City water disposed to sewer	m ³	0.010
Ancillary materials		
Sodium lauryl sulfate solution	kg	0.365
Other resources	kg	0
Energy input	kWh	0
Other energy carriers	kWh	0
Power output of equipment	kW	0
Waste materials from maintenance	kg	0
Direst emissions to ambient air, soil, and water	kg	0
Further assumptions for scenario development	-	-

 Table 12. Sloan Sensor Flushometer Repair Summary.

Repair	Unit	Value
Repair process information	-	Per manufacturer, some parts require replacement to repair product
Inspection process information	-	N/A
Repair cycle	Cycles/RSL	1-2
Repair cycle	Cycles/ESL	75-115
Net freshwater consumption	m ³	0
Ancillary materials	kg	0.847
Brass	kg	0.487
Rubber	kg	0.199
Zinc	kg	0.042
Celcon	kg	0.036
EPDM	kg	0.035
Battery	kg	0.015
Delrin	kg	0.009
Stainless Steel	kg	0.007
Nylon	kg	0.006
HDPE	kg	0.005
Other	kg	0.005
Energy input	kWh	0
Waste materials from repair	kg	0.847
Landfill	kg	0.847
Direct emissions to ambient air, soil, and water	kg	0
Further assumption for scenario development	-	•

 Table 13. Sloan Sensor Flushometer Replacement Summary.

Replacement	Unit	Value
Reference Service Life	Years	10
Replacement cycle (ESL/RSL)-1	-	6.5
Energy input	kWh	0
Net freshwater consumption	m ³	0
Ancillary materials	kg	0
Replacement of materials	kg	3.51
Direct emissions to ambient air, soil, and water	kg	0
Further assumptions for scenario development	-	-

Table 14. Sloan Sensor Flushometer Refurbishment Summary.

Refurbishment	Unit	Value
Refurbishment process	-	N/A
Refurbishment cycle	Cycles/RSL	0
Refurbishment cycle	Cycles/ESL	0
Energy input	kWh	0
Net freshwater consumption	m^3	0
Material input	kg	0
Waste materials	kg	0
Direct emissions to ambient air, soil, and water	kg	0
Further assumption for scenario development	-	-

Table 15. Sloan Sensor Flushometer Operational Energy and Water Use Summary.

Operational Energy and Water Use	Unit	Toilet Fixtu	ıres	Urinal Fixtures			
		1.11 gpf (4.2 Lpf)	1.28 gpf (4.8 Lpf)	0.125 gpf (0.473 Lpf)	0.25 gpf (0.946 Lpf)	0.5 gpf (1.89 Lpf)	
Net freshwater consumption							
City water to sewer	m³/RSL	650	756	73.8	148	295	
Ancillary materials	kg	0	0	0	0	0	
Energy input	kWh	0	0	0	0	0	
Equipment power output	kW	0	0	0	0	0	
Characteristic performance	-	-		-			
Direct emissions to ambient air, soil, water	kg	0	0	0	0	0	
Further assumptions for scenario development (per PCR)							
Number of users per product	-	30	30		30		
Number of uses per day	-	2		2			
Number of use days per year	-	260		260			

^{*} For dual flush products, the Part B PCR specifies the flush volume is calculated using a 2:1 ratio to achieve an 'equivalent flush'. The 'equivalent flush' of the dual flush products within the Sensor product line fall within the ranges of the single flush product volumes specified for Toilet Fixtures.

.....

4.6 End-of-Life

Table 16. Sloan Sensor Flushometer End-of-Life Summary.

End-of-life		Unit	Value
Assumptions fo	Assumptions for scenario development		Manual deconstruction, followed by 100 km truck transport to final disposal in landfill
Collection	Collected separately	kg	0
process	Collected with mixed construction waste		3.51
Recovery	Reuse	kg	0
	Recycling	kg	2.29
	Landfill	kg	0.404
	Incineration	kg	0
	Incineration with energy recovery	kg	0
	Energy conversion	-	-
Disposal	Product of material for final deposition	kg	1.22
Removals of bio	ogenic carbon (excluding packaging)	kg CO ₂	0

5. LCA: Results

Results of the Life Cycle Assessment are presented below. It is noted that LCA results are relative expressions and do not predict impacts on category endpoints, the exceeding of thresholds, safety margins or risks. All LCA results are stated to three significant figures in agreement with the PCR for this product and therefore the sum of the total values may not exactly equal 100%. Modules with zero (0) impacts: B1, B5, B6, C1, and C3 are omitted from the results tables. Module B7, Operational Water Use, is reported separately for the various flush volume applications available. The following environmental impact category indicators are reported using characterization factors using the CML-IA impact assessment method and the TRACI 2.1 impact assessment method.

Table 17. Mandatory Environmental Impact Assessment Categories.

3 1			
CMLI-A Impact Category	Unit	TRACI 2.1 Impact Category	Unit
GWP: Global Warming Potential	kg CO ₂ eq.	GWP: Global Warming Potential	kg CO ₂ eq.
ODP: Depletion potential of the stratospheric ozone layer	kg CFC 11 eq.	ODP: Depletion potential of the stratospheric ozone layer	kg CFC 11 eq.
AP: Acidification Potential of soil and water	kg SO ₂ eq.	AP: Acidification Potential of soil and water	kg SO ₂ eq.
EP: Eutrophication Potential	kg PO ₄ 3- eq.	EP: Eutrophication Potential	kg N eq.
POCP: Photochemical Oxidant Creation Potential	kg C ₂ H ₄ eq.	SFP: Smog Formation Potential	kg O₃ eq.
ADPE: Abiotic Depletion Potential, elements	kg Sb eq	FFD: Fossil Fuel Depletion	MJ Surplus
ADPF: Abiotic Depletion Potential, fossil fuels	MI		

These impact categories are globally deemed mature enough to be included in Type III environmental declarations. Other categories are being developed and defined and LCA should continue making advances in their development. However, the EPD users shall not use additional measures for comparative purposes. The following inventory parameters, specified by the PCR, are also reported.

 Table 18. Additional Transparency Categories.

Resources	Unit	Waste and Outflows	Unit
RPRE: Renewable primary resources used as energy carrier (fuel)	MJ, LHV	HWD: Hazardous waste disposed	kg
RPR _M : Renewable primary resources with energy content used as material	MJ, LHV	NHWD: Non-hazardous waste disposed	kg
NRPRE: Non-renewable primary resources used as an energy carrier (fuel)	MJ, LHV	RWD: Radioactive waste, conditioned, to final repository	kg
NRPR _M : Non-renewable primary resources with energy content used as material	MJ, LHV	CRU: Components for re-use	kg
SM: Secondary materials	kg	MR: Materials for recycling	kg
RSF: Renewable secondary fuels	MJ, LHV	MER: Materials for energy recovery	kg
NRSF: Non-renewable secondary fuels	MJ, LHV	EE: Recovered energy exported from the product system	kg
RE: Recovered energy	MJ, LHV	EE: Recovered energy exported from the product system	MJ, LHV
FW: Use of new freshwater resources	m³	-	-

Sloan Sensor Flushometer Results

Table 19. Impact indicator results for Sloan Sensor Flushometers.

GWP	ODP		AP	E	Р	POCP		ADPE	ADPF
kg CO₂ eq	kg CFC-11 eq	kg	SO ₂ eq	kg PC) ₄ 3- eq	kg C ₂ H ₄	eq	kg Sb eq	MJ
20.0	1.63x10 ⁻⁶	(0.279	0.1	109	0.012		0.009	276
0.905	1.55x10 ⁻⁷	(0.007	0.0	001	2.04x10)-4	2.81x10 ⁻⁶	13.1
4.77	4.46x10 ⁻⁷	C	0.013	0.0	800	7.78x10)-4	1.48x10 ⁻⁵	57.4
25.7	2.23x10 ⁻⁶	C).299	0.1	118	0.013		0.009	347
4.88	8.48x10 ⁻⁷	C	0.019	0.0	004	6.40x10)-4	1.69x10 ⁻⁵	72.3
0.131	1.53x10 ⁻⁸	2.1	10x10 ⁻⁴	1.40	x10 ⁻⁴	8.02x10) -6	2.94x10 ⁻⁷	0.795
14.8	8.95x10 ⁻⁷	(0.046	0.2	230	0.008		1.20x10 ⁻⁴	55.7
36.1	3.24x10 ⁻⁶	C	0.111	0.0)48	0.006		0.001	618
200	2.01x10 ⁻⁵		2.07	0.7	799	0.090		0.057	2730
0.060	1.04x10 ⁻⁸	2.3	30x10 ⁻⁴	5.37	x10 ⁻⁵	7.82x10) -6	2.07x10 ⁻⁷	0.885
0.078	1.21x10 ⁻⁸	4.6	50x10 ⁻⁴	1.00	x10 ⁻⁴	1.47x10) -5	2.67x10 ⁻⁷	1.11
0.010	2.64x10 ⁻⁹	6.2	28x10 ⁻⁵	1.42	x10 ⁻⁵	2.51x10) -6	2.84x10 ⁻⁸	0.233
GWP	ODP		AP			EP		SFP	FFD
GWP kg CO₂ eq	ODP kg CFC-11 e	eq	AP kg SO2		kg	EP N eq	ļ	SFP kg O₃ eq	FFD MJ Surplus
	_			₂ eq			ļ		
kg CO₂ eq	kg CFC-11 e	,	kg SO:	eq	0	N eq	ı	kg O₃ eq	MJ Surplus
kg CO₂ eq 19.9	kg CFC-11 e 2.01x10 ⁻⁶	7	kg SO 2 0.25	2 eq 25	0	N eq .239	I	k g O₃ eq 1.58	MJ Surplus 34.3
kg CO ₂ eq 19.9 0.904	kg CFC-11 e 2.01x10 ⁻⁶ 2.06x10 ⁻⁷	; '	kg SO2 0.25 0.00	2 eq 5 8 4	0	N eq .239 .001	1	kg O₃ eq 1.58 0.162	MJ Surplus 34.3 1.88
kg CO ₂ eq 19.9 0.904 4.69	kg CFC-11 e 2.01x10 ⁻⁶ 2.06x10 ⁻⁷ 5.70x10 ⁻⁷	3	kg SO2 0.25 0.00 0.01	eq eq 5 8 4	0 0 0	.239 .001 .017	·	kg O₃ eq 1.58 0.162 0.224	MJ Surplus 34.3 1.88 7.55
kg CO ₂ eq 19.9 0.904 4.69 25.5	kg CFC-11 e 2.01x10 ⁻⁶ 2.06x10 ⁻⁷ 5.70x10 ⁻⁷ 2.78x10⁻⁶	j	kg SO: 0.25 0.00 0.01 0.27	2 eq 5 8 4 7 2	0 0 0 0	N eq .239 .001 .017		kg O ₃ eq 1.58 0.162 0.224 1.97	MJ Surplus 34.3 1.88 7.55 43.8
kg CO ₂ eq 19.9 0.904 4.69 25.5 4.86	kg CFC-11 c 2.01×10 ⁻⁶ 2.06×10 ⁻⁷ 5.70×10 ⁻⁷ 2.78×10 ⁻⁶ 1.13×10 ⁻⁶	5	kg SO: 0.25 0.00 0.01 0.27 0.02	2 eq 5 8 4 77 2 10 ⁻⁴	0 0 0 0 0 3.0	N eq .239 .001 .017 .257	1	kg O₃ eq 1.58 0.162 0.224 1.97 0.532	MJ Surplus 34.3 1.88 7.55 43.8 10.3
kg CO ₂ eq 19.9 0.904 4.69 25.5 4.86 0.131	kg CFC-11 c 2.01x10 ⁻⁶ 2.06x10 ⁻⁷ 5.70x10 ⁻⁷ 2.78x10 ⁻⁶ 1.13x10 ⁻⁶ 1.81x10 ⁻⁸		kg SO: 0.25 0.00 0.01 0.27 0.02 2.30x	2 eq 55 88 4 4 77 2 10 ⁻⁴ 1	0 0 0 0 0 3.0	.239 .001 .017 .257 .005 0x10 ⁻⁴	ı	kg O₃ eq 1.58 0.162 0.224 1.97 0.532 0.004	MJ Surplus 34.3 1.88 7.55 43.8 10.3 0.106
kg CO ₂ eq 19.9 0.904 4.69 25.5 4.86 0.131 14.7	kg CFC-11 c 2.01x10 ⁻⁶ 2.06x10 ⁻⁷ 5.70x10 ⁻⁷ 2.78x10 ⁻⁶ 1.13x10 ⁻⁶ 1.81x10 ⁻⁸ 9.98x10 ⁻⁷	5 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	kg SO2 0.25 0.00 0.01 0.27 0.02 2.30x' 0.05	2 eq 5 8 4 4 7 7 2 10 -4 1 0 0	0 0 0 0 0 3.0 0	N eq .239 .001 .017 .257 .005 0x10 ⁻⁴ .529		kg O₃ eq 1.58 0.162 0.224 1.97 0.532 0.004 0.608	MJ Surplus 34.3 1.88 7.55 43.8 10.3 0.106 5.57
kg CO ₂ eq 19.9 0.904 4.69 25.5 4.86 0.131 14.7 35.8	kg CFC-11 c 2.01x10 ⁻⁶ 2.06x10 ⁻⁷ 5.70x10 ⁻⁷ 2.78x10 ⁻⁶ 1.13x10 ⁻⁶ 1.81x10 ⁻⁸ 9.98x10 ⁻⁷ 4.06x10 ⁻⁶	5	kg SO: 0.25 0.00 0.01 0.27 0.02 2.30x' 0.05	2 eq 55 88 44 77 2 2 10 ⁻⁴ 1 0 5 5	0 0 0 0 0 3.0 0	N eq .239 .001 .017 .257 .005 .0x10 ⁻⁴ .529 .101		kg O₃ eq 1.58 0.162 0.224 1.97 0.532 0.004 0.608 1.26	MJ Surplus 34.3 1.88 7.55 43.8 10.3 0.106 5.57 86.3
kg CO ₂ eq 19.9 0.904 4.69 25.5 4.86 0.131 14.7 35.8	kg CFC-11 c 2.01x10 ⁻⁶ 2.06x10 ⁻⁷ 5.70x10 ⁻⁷ 2.78x10 ⁻⁶ 1.13x10 ⁻⁶ 1.81x10 ⁻⁸ 9.98x10 ⁻⁷ 4.06x10 ⁻⁶ 2.55x10 ⁻⁵	5 7 7 7 8 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8	kg SO: 0.25 0.00 0.01 0.27 0.02 2.30x 0.05 0.11	2 eq 5 8 4 7 7 2 10 ⁻⁴ 1 0 5 10 ⁻⁴	0 0 0 0 3.0 0	N eq .239 .001 .017 .257 .005 0x10 ⁻⁴ .529 .101		kg O₃ eq 1.58 0.162 0.224 1.97 0.532 0.004 0.608 1.26 16.3	MJ Surplus 34.3 1.88 7.55 43.8 10.3 0.106 5.57 86.3 352
	kg CO ₂ eq 20.0 0.905 4.77 25.7 4.88 0.131 14.8 36.1 200 0.060 0.078	kg CO₂ eq kg CFC-11 eq 20.0 1.63x10-6 0.905 1.55x10-7 4.77 4.46x10-7 25.7 2.23x10-6 4.88 8.48x10-7 0.131 1.53x10-8 14.8 8.95x10-7 36.1 3.24x10-6 200 2.01x10-5 0.060 1.04x10-8 0.078 1.21x10-8	kg CO₂ eq kg CFC-11 eq kg 20.0 1.63x10 ⁻⁶ 0 0.905 1.55x10 ⁻⁷ 0 4.77 4.46x10 ⁻⁷ 0 25.7 2.23x10 ⁻⁶ 0 4.88 8.48x10 ⁻⁷ 0 0.131 1.53x10 ⁻⁸ 2.7 14.8 8.95x10 ⁻⁷ 0 36.1 3.24x10 ⁻⁶ 0 200 2.01x10 ⁻⁵ 0 0.060 1.04x10 ⁻⁸ 2.3 0.078 1.21x10 ⁻⁸ 4.6	kg CO2 eq kg CFC-11 eq kg SO2 eq 20.0 1.63×10 ⁻⁶ 0.279 0.905 1.55×10 ⁻⁷ 0.007 4.77 4.46×10 ⁻⁷ 0.013 25.7 2.23×10 ⁻⁶ 0.299 4.88 8.48×10 ⁻⁷ 0.019 0.131 1.53×10 ⁻⁸ 2.10×10 ⁻⁴ 14.8 8.95×10 ⁻⁷ 0.046 36.1 3.24×10 ⁻⁶ 0.111 200 2.01×10 ⁻⁵ 2.07 0.060 1.04×10 ⁻⁸ 2.30×10 ⁻⁴ 0.078 1.21×10 ⁻⁸ 4.60×10 ⁻⁴	kg CO2 eq kg CFC-11 eq kg SO2 eq kg PC 20.0 1.63x10-6 0.279 0.1 0.905 1.55x10-7 0.007 0.0 4.77 4.46x10-7 0.013 0.0 25.7 2.23x10-6 0.299 0.1 4.88 8.48x10-7 0.019 0.0 0.131 1.53x10-8 2.10x10-4 1.40 14.8 8.95x10-7 0.046 0.2 36.1 3.24x10-6 0.111 0.0 200 2.01x10-5 2.07 0.7 0.060 1.04x10-8 2.30x10-4 5.37 0.078 1.21x10-8 4.60x10-4 1.00	kg CO2 eq kg CFC-11 eq kg SO2 eq kg PO43 eq 20.0 1.63x10-6 0.279 0.109 0.905 1.55x10-7 0.007 0.001 4.77 4.46x10-7 0.013 0.008 25.7 2.23x10-6 0.299 0.118 4.88 8.48x10-7 0.019 0.004 0.131 1.53x10-8 2.10x10-4 1.40x10-4 14.8 8.95x10-7 0.046 0.230 36.1 3.24x10-6 0.111 0.048 200 2.01x10-5 2.07 0.799 0.060 1.04x10-8 2.30x10-4 5.37x10-5 0.078 1.21x10-8 4.60x10-4 1.00x10-4	kg CO2 eq kg CFC-11 eq kg SO2 eq kg PO43 eq kg C2H4 20.0 1.63x10-6 0.279 0.109 0.012 0.905 1.55x10-7 0.007 0.001 2.04x10 4.77 4.46x10-7 0.013 0.008 7.78x10 25.7 2.23x10-6 0.299 0.118 0.013 4.88 8.48x10-7 0.019 0.004 6.40x10 0.131 1.53x10-8 2.10x10-4 1.40x10-4 8.02x10 14.8 8.95x10-7 0.046 0.230 0.008 36.1 3.24x10-6 0.111 0.048 0.006 200 2.01x10-5 2.07 0.799 0.090 0.060 1.04x10-8 2.30x10-4 5.37x10-5 7.82x10 0.078 1.21x10-8 4.60x10-4 1.00x10-4 1.47x10	kg CO2 eq kg CFC-11 eq kg SO2 eq kg PO43 eq kg C2H4 eq 20.0 1.63x10-6 0.279 0.109 0.012 0.905 1.55x10-7 0.007 0.001 2.04x10-4 4.77 4.46x10-7 0.013 0.008 7.78x10-4 25.7 2.23x10-6 0.299 0.118 0.013 4.88 8.48x10-7 0.019 0.004 6.40x10-4 0.131 1.53x10-8 2.10x10-4 1.40x10-4 8.02x10-6 14.8 8.95x10-7 0.046 0.230 0.008 36.1 3.24x10-6 0.111 0.048 0.006 200 2.01x10-5 2.07 0.799 0.090 0.060 1.04x10-8 2.30x10-4 5.37x10-5 7.82x10-6 0.078 1.21x10-8 4.60x10-4 1.00x10-4 1.47x10-5	kg CO2 eq kg CFC-11 eq kg SO2 eq kg PO4³ eq kg C2H4 eq kg Sb eq 20.0 1.63x10-6 0.279 0.109 0.012 0.009 0.905 1.55x10-7 0.007 0.001 2.04x10-4 2.81x10-6 4.77 4.46x10-7 0.013 0.008 7.78x10-4 1.48x10-5 25.7 2.23x10-6 0.299 0.118 0.013 0.009 4.88 8.48x10-7 0.019 0.004 6.40x10-4 1.69x10-5 0.131 1.53x10-8 2.10x10-4 1.40x10-4 8.02x10-6 2.94x10-7 14.8 8.95x10-7 0.046 0.230 0.008 1.20x10-4 36.1 3.24x10-6 0.111 0.048 0.006 0.001 200 2.01x10-5 2.07 0.799 0.090 0.057 0.060 1.04x10-8 2.30x10-4 5.37x10-5 7.82x10-6 2.07x10-7 0.078 1.21x10-8 4.60x10-4 1.00x10-4 1.47x10-5 2.67x10-7

.....

 Table 20. Additional Resource Use and Waste indicators for the Sloan Sensor Flushometers.

INA = Indicator not assessed, | Neg.= Negligible

Resource	RPRE	RPR_M	NRPRE	NRPR _M	SM	RSF	NRSF	RE	FW
Use	MJ	MJ	MJ	MJ	kg	MJ	MJ	MJ	m³
A1	27.5	0.00	346	INA	2.25	Neg.	Neg.	Neg.	0.303
A2	0.143	0.00	13.2	INA	0.00	Neg.	Neg.	Neg.	0.002
A3	14.2	0.00	66.3	INA	0.00	Neg.	Neg.	Neg.	0.028
A1-A3 Total:	41.9	0.00	425	INA	2.25	Neg.	Neg.	Neg.	0.333
A4	0.843	0.00	73.1	INA	0.00	Neg.	Neg.	Neg.	0.010
A5	0.025	0.00	0.827	INA	0.00	Neg.	Neg.	Neg.	4.70x10 ⁻⁴
B2	251	0.00	72.2	INA	0.00	Neg.	Neg.	Neg.	0.916
B3	23.3	0.00	767	INA	0.515	Neg.	Neg.	Neg.	0.306
B4	278	0.00	3240	INA	14.6	Neg.	Neg.	Neg.	2.23
C2	0.010	0.00	0.896	INA	0.00	Neg.	Neg.	Neg.	1.20x10 ⁻⁴
C3	0.024	0.00	1.14	INA	0.00	Neg.	Neg.	Neg.	2.00x10 ⁻⁴
C4	0.003	0.00	0.236	INA	0.00	Neg.	Neg.	Neg.	2.10x10 ⁻⁴
Waste &	HWD	NHV	VD HL	RW/ILLRW	CRU	MR		MER	EE
Output	kg	kg		kg	kg	kg		kg	MJ, LHV
A1	0.005	4.5		0.001	0.00	0.00		Neg.	Neg.
A2	3.15x10 ⁻⁵	0.57	74	3.74x10 ⁻⁵	0.00	0.00		Neg.	Neg.
A3	8.85x10 ⁻⁵	2.3		2.36x10 ⁻⁴	0.00	0.00		Neg.	Neg.
A1-A3 Total:	0.005	7.4		0.002	0.00	0.00		Neg.	Neg.
A4	1.90x10 ⁻⁴	3.7		4.80x10 ⁻⁴	0.00	0.00		Neg.	Neg.
A5	2.67x10 ⁻⁶	0.91		5.03x10 ⁻⁶	0.00	0.695		Neg.	Neg.
B2	0.007	2.6	3 :	2.20x10 ⁻⁴	0.00	0.00		Neg.	Neg.
B3	0.004	13.	1	0.003	0.00	0.00		Neg.	Neg.
B4	0.037	78.	4	0.014	0.00	22.0		Neg.	Neg.
C2	2.37x10 ⁻⁶	0.04		5.86x10 ⁻⁶	0.00	0.00		Neg.	Neg.
C3	2.88x10 ⁻⁶	0.06	54	7.35x10 ⁻⁶	0.00	0.00		Neg.	Neg.
C4	4.18x10 ⁻⁷	1.2	2	1.54x10 ⁻⁶	0.00	2.29		Neg.	Neg.

Sloan Sensor Flushometer Results (B7 - Operational Water Use)

Table 21. Impact indicator results for Sloan Sensor Flushometers Module B7.

CML Impac	t Method	Toilet F	ixtures		Urinal Fixtures			
		1.1 gpf (4.2 Lpf)	1.28 gpf (4.8 Lpf)	0.125 gpf (0.473 Lpf)	0.25 gpf (0.946 Lpf)	0.5 gpf (1.89 Lpf)		
GWP	kg CO ₂ eq	7660	8910	871	1740	3480		
ODP	kg CFC-11 eq	0.002	0.002	2.01x10 ⁻⁴	4.01x10 ⁻⁴	0.001		
AP	kg SO ₂ eq	42.0	48.8	4.77	9.54	19.1		
EP	kg PO ₄ 3- eq	77.0	89.7	8.76	17.5	35.0		
POCP	kg C ₂ H ₄ eq	2.00	2.32	0.227	0.454	0.907		
ADPE	kg Sb eq	0.067	0.078	0.008	0.015	0.031		
ADPF	MJ	82,900	96,400	9420	18,800	37,700		
TRACI Impa	act Method	Toilet F	ixtures		Urinal Fixtures			
		1.1 gpf (4.2 Lpf)	1.28 gpf (4.8 Lpf)	0.125 gpf (0.473 Lpf)	0.25 gpf (0.946 Lpf)	0.5 gpf (1.89 Lpf)		
GWP	kg CO₂ eq	7610	8860	865	1730	3460		
ODP	kg CFC-11 eq	0.002	0.002	2.13x10 ⁻⁴	4.27×10 ⁻⁴	0.001		
AP	kg SO₂ eq	44.5	51.8	5.06	10.1	20.2		
EP	kg N eq	177	206	20.1	40.2	80.4		
SFP	kg O₃ eq	515	599	58.5	117	234		
FFD	MJ Surplus	7260	8450	8.25	1650	3300		

Table 22. Additional Resource Use and Waste indicators for the Sloan Sensor Flushometers Module B7. INA = Indicator not assessed, | Neg.= Negligible

Resource Use		Toilet Fi	ixtures		Urinal Fixtures		
		1.1 gpf (4.2 Lpf)	1.28 gpf (4.8 Lpf)	0.125 gpf (0.473 Lpf)	0.25 gpf (0.946 Lpf)	0.5 gpf (1.89 Lpf)	
RPRE	MJ, LHV	9720	11,300	1100	2210	4420	
RPR _M	MJ, LHV	0.00	0.00	0.00	0.00	0.00	
NRPRE	MJ, LHV	97,200	113,000	11,100	22,100	44,200	
NRPR _M	MJ, LHV	INA	INA	INA	INA	INA	
SM	kg	0.00	0.00	0.00	0.00	0.00	
RSF	MJ, LHV	Neg.	Neg.	Neg.	Neg.	Neg.	
NRSF	MJ, LHV	Neg.	Neg.	Neg.	Neg.	Neg.	
RE	MJ, LHV	Neg.	Neg.	Neg.	Neg.	Neg.	
FW	m ³	668	778	76.0	152	304	
Waste & Outp	ut	Toilet Fi	ixtures	Urinal Fixtures			
		1.1 gpf (4.2 Lpf)	1.28 gpf (4.8 Lpf)	0.125 gpf (0.473 Lpf)	0.25 gpf (0.946 Lpf)	0.5 gpf (1.89 Lpf)	
HWD	kg	0.775	0.902	0.088	0.176	0.352	
NHWD	kg	3380	3930	384	176	1530	
HLRW/ILLRW	kg	0.314	0.366	0.036	0.071	0.143	
CRU	kg	0.00	0.00	0.00	0.00	0.00	
MR	kg	0.00	0.00	0.00	0.00	0.00	
MER	kg	Neg.	Neg.	Neg.	Neg.	Neg.	
EE	MJ, LHV	Neg.	Neg.	Neg.	Neg.	Neg.	

6. LCA: INTERPRETATION

The interpretation phase conforms to ISO 14044. The interpretation included the use of evaluation and sensitivity checks to steer the iterative process during the assessment, and a final evaluation including completeness, sensitivity, and consistency checks, at the end of the study.

The contributions to total impact indicator results are dominated by the use phase impacts, specifically, the operational water use module (B7) with as much as 90% of the overall impacts and secondly by the use phase replacement module (B4). When examining the results without the use phase impacts, the results are dominated by the raw material module (A1) with the manufacturing module (A3) and product transportation module (A4) also showing significant impacts.

Figure 2. Contribution analysis for the Sloan Sensor Flushometers (excluding use phase).

7. ADDITIONAL ENVIRONMENTAL INFORMATION

Sloan is a proud member of the United States Green Building Council (USGBC) and through the use of Leadership in Energy and Environmental Design (LEED) Green Building Rating System, Sloan recognizes and validates the importance of best-on-class building strategies and practices of high performing green buildings. Sloan's flushometers within this EPD can be used to help achieve water efficiency goals as well as gaining USGBC LEED v4 points and complying with building codes.

No environmental or health impacts are expected due to extraordinary effects including fire and/or water damage and product destruction

For more information on Sloan's certifications and environmental initiatives please visit the website at www.sloan.com.

19

8. REFERENCES

- CML-IA Characterization Factors. Leiden University, Institute of Environmental Sciences. April 2013. https://www.universiteitleiden.nl/en/research/research-output/science/cml-ia-characterisation-factors
- Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI). U.S. EPA.
- Ecoinvent v3.8 2021. Swiss Center for Life Cycle Inventories, 2010. http://www.ecoinvent.org
- ISO 14025:2006 Environmental labels and declarations Type III environmental declarations Principles and Procedures.
- ISO 14040: 2006/Amd 1:2020 Environmental Management Life cycle assessment Principles and Framework
- ISO 14044: 2006/Amd 1:2017/ Amd 2:2020 Environmental Management Life cycle assessment Requirements and Guidelines.
- ISO 21930: 2017 Sustainability in building construction Environmental declaration of building products.
- Life Cycle Assessment of Diaphragm and Piston Manual Flushometers. SCS Global Services Final Report. Prepared for Sloan Valve Company. May 2022.
- SCS Type III Environmental Declaration Program: Program Operator Manual. V11.0 November 2021. SCS Global Services.
- European Joint Research Commission. International Reference Life Cycle Data System handbook. *General guide for Life Cycle Assessment Detailed Guidance.* © European Union, 2010.
- UL. PCR Guidance for Building-Related Products and Services Part A: Life Cycle Assessment Calculation Rules and Report Requirements. Version 3.2. December 2018.
- UL PCR Guidance for Building-Related Products and Services Part B: Kitchen and Bath Fixture Fittings and Accessory Products EPD Requirements. Version 1.0. October 2020.

.....

For more information please contact

Sloan Valve Company

10500 Seymour Avenue Franklin Park, IL 60131 customer.service@sloan.com | 800.982.5839 https://www.sloan.com

SCS Global Services

2000 Powell Street, Ste. 600, Emeryville, CA 94608 USA Main +1.510.452.8000 | fax +1.510.452.8001