e

By Kay Herbert, PhD

stimated peak water demand is customarily used to
Esize a building’s piping system. But with Covid-19

and other pathogens, a higher demand for sensor-
activated and high efficiency fixtures has increased the
need for more accurate demand calculations given a large
variety of water dispensing fixtures.

A new approach to adapt the known method of convo-
lution on discrete distributions is introduced for accurate
water demand estimation. The new approach finds the
cumulative distribution function (CDF) of water demand
for an arbitrary number of different fixture groups with
different probabilities of activation and different flow
rates. The method is accurate for smaller buildings and
individual restrooms with few fixtures, as well as for large
buildings with high fixture counts. Using this approach,
a design curve to look up the estimated peak for water
demand will no longer be needed.

Peak Water Demand at a Glance

Accurate estimates of peak water demand have long
been an essential aspect of designing a building’s plumb-
ing system. While accurate sizing of the plumbing system
requires it to be large enough to handle peak demand, it is
also known that stagnant water promotes growth of water-
borne disecases like Legionella, emphasizing the need to
optimize a plumbing system. Making accurate demand
calculations even more critical has been the exponential
growth of “green” buildings with reduced water demand.
In fact, a recent study by Rhoads, Pruden and Edwards|[ 1]
found that increased water age due to reduced consump-
tion is relevant to the stability of water quality.

In 1940, Roy Hunter[2] published his ground-breaking
paper on estimating loads in plumbing systems. Hunter
used a clever method of collapsing the demand curves
of different plumbing fixture types onto one approximate
curve in order to account for the differences in both prob-
abilities and tlow rates.

While Hunter’s approximation received worldwide
acceptance, it is not fully accurate, especially considering
modern plumbing systems. While many improvements
have been made to Hunter’s approximation over the past
80 years, none have been deemed universally accurate.

Yet, by using the method of convolution, it is now pos-
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sible to get perfectly accurate results via direct numerical
calculations for both small and large plumbing systems.

Hunter’s Curve

Hunter started with a few premises: every plumbing
fixture essentially has an expected on-time where the
fixture draws water at a flow rate g for a duration time .
Additionally, every fixture has a minimum expected time
between uses of duration 7, therefore the fixture has an
expected off time of 7-¢ between uses. The minimum time
T between successive activations and the active time t of
the same fixture can be a function of the number of people
in a building, the behaviour of people using it, or proper-
ties of the type of fixture.

Taking a random sample, we would find a fixture in a
building dispensing water with a probability p = #T. If a
multiple number n of fixtures with the same probability
and flow rate are installed in a building, then the prob-
ability P that x fixtures (x=0, 1, 2, 3...) are operating at
the same time is given by the binomial probability density
function (PDF):

Equation 1
n -
Plx;n,p] = (x) p*(1—p)**
n n!
where (x) = m , X = 0,1,2..n

The cumulative distribution function or
C[k] = X3zk P[x; n, p]

then provides the probability that k or less fixtures are
operating at the same time. Note that C[0]= (1-p)" is the
probability that all fixtures are off, and C[n]=1 is the prob-
ability any or all fixtures are on. Hunter proposed to use
the 99th percentile (C[£]2.99) of the cumulative density
function of the distribution to determine the peak number
of fixtures k in use.

The expected peak flow rate is simply & (99th percentile
probability of fixtures n) times g (the fixture flow rate
when it is on).

Buildings typically have multiple fixture types with
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Figure 8.—Probable flow in relation to n.

Figure 1 Hunter’s original 1940 calculation
of 99th percentile curves

different probabilities and flow rates. While it is easy to
obtain the CDF for a single fixture type, the probability
functions cannot just be added to obtain the PDF or CDF
of a plumbing system with different types of fixtures.
Hunter solved this dilemma by assigning arbitrary “fixture
units” to each fixture type, in a way that the same number
of fixture units for one type of fixture results approxi-
mately in the same 99th percentile flow rate for the same
number of fixture units of other fixtures.

Recent Advances

Estimating peak demand can be more than 20 percent
wrong using Hunter’s method with modern fixtures.
That is why the need for improved accuracy prompted
Wistort[3] to propose the use of normal distributions
approximating binomial distributions. While this method
eliminates creating arbitrary fixture units and somewhat
improves accuracy, it also has diminishing accuracy for
small numbers of fixtures with small probabilities.
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Fiauns 4.—Relation of demand to fiziure unita.

Figure 2 Hunter’s clever rescaling with fixture units
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Omaghomi and Buchberger[4] discuss Wistort’s meth-
od in more detail and discuss alternate methods such as
exact enumeration and a Monte Carlo method.

Exact enumeration requires 2" (where n is the total
number of fixtures) calculations to find water demand
and therefore becomes computationally too expensive for
larger n. The Monte Carlo method requires many compu-
tations to produce more accurate results and it is difficult
to ascertain the required accuracy.

Accurate Method by Convolution

It has been shown that it is possible to calculate the
exact distribution as the sum of two discrete random dis-
tributions by taking the convolution of the two:

Equation 2

Plj;n=nl+n2]= » P1[i;nl] P2[j — i;n2]

N

i=0

Calculating the convolution is much more efficient than
enumeration, as it requires only the order of n? multipli-
cations. For k different distributions Equation 2 can be
applied successively k-/ times to obtain the combined
probability distribution as the sum of all k distributions.

To demonstrate this, the test case of n=15 fixtures
and k=6 fixture groups as shown in Table 1 (taken from
Omaghomi) as a test case here:

Table 1

k nk pk gk (gpm)
1 2 125 40
21 140 3.0

3 | 100 25

4 6 200 15

5 1 125 20

6 4 067 2.4

Using Equation 1 to obtain the distribution for each
fixture group and then repeatedly applying Equation 2, the
probabilities of all fixture combinations can be found, and
the resulting CDF can be obtained. Table 2 and Figure 3
shows the resulting probability distribution (rounded to 6
decimals) and the resulting cumulative distribution func-
tion (rounded to 4 decimals).

Table 2

n p CDF
0 0.102999 0.103
1 0.256438 (:3595
2 0.293701 0.653
3 0.205137 0.8585
4 0.097657 0.956
5 0.033544 0.9895
6 0.008583 0.998
7 0.001665 0.9995
8 0.000247 1

9 0.000028 |

10 2.5E-06 1

11 0 1

12 0 1

13 0 |

4 0 1

15 0 1
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Figure 3: CDF from Table 2

While the above method obtains the probability for an
outcome of n (n=0,1,2...15) fixtures operating simultane-
ously, it is not useful to obtain the probability of outcome
based in flow rate. Different fixtures not only can have
different probabilities of operating, but they also can have
different flow rates. Just multiplying the number of fix-
tures by a peak or average flow rate will not guarantee the
correct distribution.

In order to get an accurate distribution for flow rates as
the outcome, all distributions must have the same discrete
flow rate scale prior to obtaining the distribution sum via
the convolution (Equation 2).

An efficient method is to choose a consistent flow rate
interval dg where dq is chosen so that the flow rate gi for
every fixture group i divided by dg results in an integer
mi i.e. qi/dq = m;. The probability density function for a
unique fixture group i with flow rate ¢; and probability p;
is then given by:

Equation 3
Plldg;n;,p] = (Z‘) ¥ —p)"* forl=xm;x =0..n; and
Plldg;n;,p;] =0 forl +xmy, 1=01..m;ym

For the example of Table 1, with fixture group 6 (k=6),
the flowrate distribution is given in Figure 4 with dg=.1
gpm. For a single fixture group, the probability density
function is very sparse for small dq. Multiple convolutions
with all the other fixture groups of different flow rates
makes the distribution more populated. Figure 5 shows the
resulting probability density function (PDF) for all fixture
groups from Table 1.

The cumulative density function (CDF) can be obtained
in the usual manner summing the PDF as shown in Figure
6. The 99th percentile flowrate ggg (or any other percen-
tile) can then be found. In this example ggg = 12.7 gpm.

For many fixtures, the same method gives accurate
results as well. Using the same parameters from Table 1
except multiplying all fixture counts by 100 (for a total of
1,500 fixtures), the probabilities (Figure 7) and the CDF
(Figure 8) are obtained.
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Figure 4: Probability density function
with flowrate as outcome
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Figure 5: example probability density function by convolution
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Figure 6 CDF for above example
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Figure 7 Probability density function for 1,500 fixtures

It was found that in this case ggg = 508.4 gpm.

All calculations were performed on a Lenovo XI
Extreme laptop and took only seconds to complete when
programmed and run in Wolfram Mathematica. It should
be noted that memory requirements and computation time
can be reduced by truncating the ends of large PDF arrays
where probabilities are extremely low, if needed.

This method allows us to analyse demand anywhere
from single restrooms and water dispensing zones to com-
mercial buildings, making approximations like Hunter’s
curve and Wistort’s formula obsolete.

Fixture usage probabilities and flow rates can be a
function of time, temperature, pressure, type of usage,
and human behaviour. A better understanding of these
mechanisms drives the future design of modern restrooms
and will maximize sustainability and health. @

Kay Herbert is Sloan’s chief scientist. He works to aid
in the research and development of new technologies and
products to help bring innovative solutions to the rest-
room.
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Figure 8 CDF for 1,500 fixtures
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